DETERMINING INCLUSIONS FOR THE MAXWELL’S EQUATIONS

1. Enclosing obstacle

1.1. Direct Problems and CGO-solutions. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^3 \) with a \(C^{2,1} \)-boundary and a connected complement \(\mathbb{R}^3 \setminus \bar{\Omega} \). Assume \(D \subset \Omega \) is the obstacle or cavity. The electric permittivity \(\varepsilon_0 \), conductivity \(\sigma_0 \) and magnetic permeability \(\mu_0 \) have the following properties: there are positive constants \(\varepsilon_m, \varepsilon_M, \mu_m, \mu_M \) and \(\sigma_M \) such that for all \(x \in \Omega \)

\[
\varepsilon_m \leq \varepsilon_0(x) \leq \varepsilon_M, \quad \mu_m \leq \mu_0(x) \leq \mu_M, \quad 0 \leq \sigma_0(x) \leq \sigma_M
\]

and \(\varepsilon_0 - \varepsilon_c, \sigma_0 - \sigma_c, \mu_0 - \mu_c \in C^3(\Omega) \) for positive constants \(\varepsilon_c \) and \(\mu_c \).

Considering the boundary value problem of Maxwell’s equations

\[
\nabla \wedge E = i \omega \mu_0 H, \quad \nabla \wedge H = -i \omega \gamma_0 E \quad \text{in} \ \Omega \setminus \bar{D},
\]

\[
\nu \wedge E = f \in TH^{1/2} \left(\partial \Omega \right) \quad \text{on} \ \partial \Omega,
\]

(1.1)

where \(\gamma_0 = \varepsilon_0 + i \frac{\sigma_0}{\omega} \), and zero tangential magnetic field condition on \(\partial D \)

\[
(\nu \wedge H)|_{\partial D} = 0,
\]

(1.2)

here \(\nu \) is the unit outer normal vector on \(\partial D \). Through this note, we assume the non-dissipative case \(\sigma_0 = 0 \). Then (1.1) degenerates to

\[
\nabla \wedge (\mu_0^{-1} \nabla \wedge E) = \omega^2 \varepsilon_0 E \quad \text{in} \ \Omega \setminus \bar{D}.
\]

(1.3)

Notations. If \(F \) is a function space on \(\partial \Omega \), the subspace of all those \(f \in F^3 \) which are tangent to \(\partial \Omega \) (orthogonal to the exterior unit normal vector field of \(\partial \Omega \)) is denoted by \(TF \). For example, for \(u \in (H^s(\partial \Omega))^3 \ (s \leq 2) \), we have the decomposition \(u = u_t + u_\nu \nu \), where the tangential component \(u_t = -\nu \wedge (\nu \wedge u) \in TH^s(\partial \Omega) \) and the normal component \(u_\nu = u \cdot \nu \in H^s(\partial \Omega) \). Therefore, we have a decomposition of space \(H^s(\partial \Omega)^3 = TH^s(\partial \Omega) \oplus H^s(\partial \Omega) \). For a bounded domain \(\Omega \) in \(\mathbb{R}^3 \), we denote

\[
TH^{1/2} \left(\partial \Omega \right) = \{ u \in H^{1/2}(\partial \Omega)^3 \mid \text{Div}(u) \in H^{1/2}(\partial \Omega) \},
\]

\[
H^1 \left(\partial \Omega \right) = \{ u \in H^1(\Omega)^3 \mid \text{Div}(\nu \wedge u) \in H^{1/2}(\partial \Omega) \},
\]

with norms

\[
\| u \|^2_{TH^{1/2} \left(\partial \Omega \right)} = \| u \|^2_{H^{1/2}(\partial \Omega)^3} + \| \text{Div}(u) \|^2_{H^{1/2}(\partial \Omega)},
\]

1
In addition, we define the weighted L^2-norm with norm (Ω). We also have the Hilbert space

$$H(\nabla \wedge, \Omega) = \{ u \in L^2(\Omega) \mid \nabla \wedge u \in L^2(\Omega)^3 \}$$

with norm

$$\|u\|_{H(\nabla \wedge, \Omega)}^2 = \|u\|_{L^2(\Omega)^3}^2 + \|\nabla \wedge u\|_{L^2(\Omega)^3}^2.$$

In addition, we define the weighted L^2 space in \mathbb{R}^3:

$$L^2_\delta = \left\{ f \in L^2_{loc}(\mathbb{R}^3) : \|f\|_{L^2_\delta}^2 = \int (1 + |x|^2) \|f(x)\|^2 dx < \infty \right\}.$$

Admissibility. It can be shown that for $f \in TH^{1/2}(\partial \Omega)$ and $g \in TH^{-1/2}(\partial D)$, the boundary value problem of Maxwell’s equations

$$\begin{cases}
\nabla \wedge E = i\omega \mu_0 H, \quad \nabla \wedge H = -i\omega \gamma_0 E & \text{in } \Omega \setminus \bar{D}, \\
u \wedge E|_{\partial \Omega} = f \\
u \wedge H|_{\partial D} = g,
\end{cases} \quad (1.4)$$

has a unique solution $(E, H) \in H(\nabla \wedge, \Omega \setminus \bar{D}) \times H(\nabla \wedge, \Omega \setminus \bar{D})$, except for a discrete set of magnetic resonance frequencies $\{\omega_n\}$. A proof for Dirichlet problem can be found in [9]. Moreover, we have the continuous dependency of the $H(\nabla \wedge)$-norm of the solution on the boundary condition

$$\begin{align*}
\|E\|_{H(\nabla \wedge, \Omega \setminus \bar{D})} &\leq C(\|f\|_{H^{1/2}(\partial \Omega)} + \|g\|_{H^{-1/2}(\partial D)}), \\
\|H\|_{H(\nabla \wedge, \Omega \setminus \bar{D})} &\leq C(\|f\|_{H^{1/2}(\partial \Omega)} + \|g\|_{H^{-1/2}(\partial D)}). \quad (1.5)
\end{align*}$$

At the same time, a similar proof as in [6] shows that the BVP (1.4) is well posed for $f \in TH^{1/2}_{\text{div}}(\partial \Omega)$, and $g \in TH^{1/2}_{\text{div}}(\partial D)$, i.e., except for the resonance frequencies there exists a unique solution $(E, H) \in H^{1/2}_{\text{div}}(\Omega \setminus \bar{D}) \times H^{1/2}_{\text{div}}(\Omega \setminus \bar{D})$ s.t.,

$$\begin{align*}
\|E\|_{H^{1/2}_{\text{div}}(\Omega \setminus \bar{D})} &\leq C(\|f\|_{TH^{1/2}_{\text{div}}(\partial \Omega)} + \|g\|_{TH^{1/2}_{\text{div}}(\partial D)}), \\
\|H\|_{H^{1/2}_{\text{div}}(\Omega \setminus \bar{D})} &\leq C(\|f\|_{TH^{1/2}_{\text{div}}(\partial \Omega)} + \|g\|_{TH^{1/2}_{\text{div}}(\partial D)}).
\end{align*}$$

Let (E_0, H_0) denotes the solution without the obstacle.

With well-posedness of the direct problem, the impedance map

$$\Lambda_D(\nu \wedge E|_{\partial \Omega}) = \nu \wedge H|_{\partial \Omega},$$

where ν is the unit outer normal on $\partial \Omega$, is bounded from $TH^{1/2}(\partial \Omega)$ to $TH^{-1/2}(\partial \Omega)$ ([9]). Moreover, it is an isomorphism from $TH^{1/2}_{\text{div}}(\partial \Omega)$ to $TH^{1/2}_{\text{div}}(\partial \Omega)$, see [6].

The reconstruction of the obstacle will use the CGO-solution constructed in [5].

CGO-solution In [5], the Maxwell’s equation was reduced to an 8×8 second
order Schrödinger vector equation by introducing the generalized Sommerfeld potential. A vector CGO-solution (Sommerfeld potential) was constructed for the Schrödinger equation, and the proof of the uniqueness is facilitated compared to [6]. Same technique also appears in dealing with the inverse boundary value problems for Maxwell’s equations with partial data [2]. The construction is in \mathbb{R}^3.

Define the scalar fields Φ and Ψ as

$$\Phi = \frac{i}{\omega} \nabla \cdot (\gamma \mu_0 E), \quad \Psi = \frac{i}{\omega} \nabla \cdot (\mu_0 H).$$

Under some assumptions on Φ and Ψ, we have Maxwell’s equation is equivalent to

$$\nabla \wedge E - \frac{1}{\gamma} \nabla \left(\frac{1}{\mu} \Psi \right) - i \omega \mu H = 0, \quad \nabla \wedge H + \frac{1}{\mu} \nabla \left(\frac{1}{\gamma} \Phi \right) + i \omega \gamma E = 0.$$

Moreover, in this case, Φ and Ψ vanish. Let

$$X = (\phi, e, h, \psi)^T \in (\mathcal{D}')^8$$

with

$$e = \gamma_0^{1/2} E, \quad h = \mu_0^{1/2} H,$$

$$\phi = \frac{1}{\gamma_0 \mu_0} \frac{1}{2} \Phi, \quad \psi = \frac{1}{\gamma_0^{1/2} \mu_0} \Psi.$$

Then X satisfies

$$(P(i\nabla) - k + V)X = 0, \quad \text{in } \Omega \quad (1.6)$$

where

$$P(i\nabla) = \begin{pmatrix} 0 & \nabla \cdot & 0 & 0 \\ \nabla \cdot & 0 & \nabla \wedge & 0 \\ 0 & -\nabla \wedge & 0 & \nabla \\ 0 & 0 & \nabla \cdot & 0 \end{pmatrix},$$

$$V = (k - \kappa) 1_8 + \left(\begin{pmatrix} 0 & \nabla \cdot & 0 & 0 \\ \nabla \cdot & 0 & -\nabla \wedge & 0 \\ 0 & \nabla \wedge & 0 & \nabla \\ 0 & 0 & \nabla \cdot & 0 \end{pmatrix} D \right) D^{-1},$$

$$D = \text{diag}(\mu_0^{1/2}, \gamma_0^{1/2} 1_3, \mu_0^{1/2} 1_3, \gamma_0^{1/2}), \quad \kappa = \omega (\gamma_0 \mu_0)^{1/2}, \quad k = \omega (\varepsilon_0 \mu_0)^{1/2}.$$

A desirable property of this operator is

$$(P(i\nabla) - k + V)(P(i\nabla) + k - V^T) = -(\Delta + k^2) 1_8 + Q,$$

where

$$Q = VP(i\nabla) - P(i\nabla)V^T + k(V + V^T) - VV^T$$

is a zeroth-order matrix multiplier. Based on this, by writing an ansatz for X, we define the generalized Sommerfeld potential Y

$$X = (P(i\nabla) + k - V^T)Y.$$
So it satisfies the Schrödinger equation
\[(-\Delta - k^2 + Q)Y = 0. \quad (1.7) \]
The following CGO-solution is due to the Faddeev’s Kernel. Let \(\zeta \in \mathbb{C}^3 \) be a vector with \(\zeta \cdot \zeta = k^2 \). Suppose \(y_{0,\zeta} \in \mathbb{C}^8 \) is a constant vector with respect to \(x \) and bounded with respect to \(\zeta \), there exist a unique solution of (1.7) of the form
\[Y_{\zeta}(x) = e^{ix \cdot \zeta}(y_{0,\zeta} - v_{\zeta}(x)), \]
where \(v_{\zeta}(x) \in (L^2_{\delta+1})^8 \), and
\[\|v_{\zeta}\|_{(L^2_{\delta+1})^8} \leq C/|\zeta| \]
for \(\delta \in (-1, 0) \). Moreover, one can show that \(v_{\zeta} \in H^s(\Omega)^8 \) for \(0 \leq s \leq 2 \), e.g., see [1], and
\[\|v_{\zeta}(x)\|_{H^s(\Omega)^8} \leq C|\zeta|^{s-1}. \quad (1.8) \]
Lemma 3.1 in [5] states that if we choose \(y_{0,\zeta} \) such that the first and the last components of \((P(-\zeta) - k)y_{0,\zeta} \) vanish, then for large \(|\zeta| \), \(X_{\zeta} \) provides the solution of the original Maxwell’s equation.

Let’s examine this \(X_{\zeta} \) more closely by giving specific choices of vectors.

\[X_{\zeta} = e^{ix \cdot \zeta} \left[(P(-\zeta) + k)y_{0,\zeta} + \left(P(-\zeta)u_{\zeta} + P(i\nabla)v_{\zeta} - V^T y_{0,\zeta} + k\nu_{\zeta} - V^T \nu_{\zeta} \right) \right]. \quad (1.9) \]

As in [5], we choose
\[y_{0,\zeta} = \frac{1}{|\zeta|}(\zeta \cdot a, ka, kb, \zeta \cdot b)^T, \]
where
\[\zeta = -i\tau \rho + \sqrt{\tau^2 + k^2} \rho^\perp, \]
with \(\rho, \rho^\perp \in S^2 \) and \(\rho \cdot \rho^\perp = 0 \). \(\tau > 0 \) is used to control the size of \(|\zeta| = \sqrt{2\tau^2 + k^2} \).

Taking \(\tau \to \infty \), we have
\[\frac{\zeta}{|\zeta|} \to \check{\zeta} = \frac{1}{\sqrt{2}}(-i\rho + \rho^\perp). \]

Choosing \(a \) and \(b \) such that
\[\check{\zeta} \cdot b = 1, \quad \check{\zeta} \cdot a = 0, \]
e.g., when \(n \geq 3 \), let
\[a \perp \rho, a \perp \rho^\perp; \quad b = \frac{\check{\zeta}}{|\check{\zeta}|^2}. \]
The choice of \(y_{0,\zeta} \) is such that
\[x_{0,\zeta} := (P(-\zeta) + k)y_{0,\zeta} = \frac{1}{|\zeta|} \begin{pmatrix} 0 \\ -\zeta \cdot a - k\zeta \wedge b + k^2 a \\ k\zeta \wedge a - (\zeta \cdot b)\zeta + k^2 b \\ 0 \end{pmatrix}. \]
It's easy to see that

\[\eta = (x_0, \zeta)_2 \to -k \zeta \wedge b \ (\sim \mathcal{O}(1)), \]

\[\theta = (x_0, \zeta)_3 \sim \mathcal{O}(\tau) \]
as \(\tau \to \infty \). Then \(X_\zeta \) is written in the form

\[X_\zeta = e^{\tau(x \cdot \rho)+i\sqrt{\tau^2+k^2}x \cdot \rho}(x_0, \zeta + r_\zeta(x)) \]

where

\[r_\zeta = P(-\zeta)v_\zeta + P(i\nabla)v_\zeta - V^T y_0, \zeta + k v_\zeta - V^T v_\zeta \]
satisfying for \(C > 0 \) independent of \(\zeta \).

\[\|r_\zeta\|_{L_3^3(\Omega)^3} \leq C. \]

Hence the CGO solution of the Maxwell’s equation is given by

\[E_0 = \varepsilon_0^{-1/2} e^{\tau(x \cdot \rho)+i\sqrt{\tau^2+k^2}x \cdot \rho}(\eta + R) \]

\[H_0 = \mu_0^{-1/2} e^{\tau(x \cdot \rho)+i\sqrt{\tau^2+k^2}x \cdot \rho}(\theta + Q) \]

where \(\eta = \mathcal{O}(1), \theta = \mathcal{O}(\tau), R, Q \in L_3^3(\mathbb{R}^3) \) are bounded for \(\tau \gg 1 \).

1.2. Main result. Adding a parameter \(t \) in the weight, we use the CGO solution

\[E_0 = \varepsilon_0^{-1/2} e^{\tau(x \cdot \rho-t)+i\sqrt{\tau^2+k^2}x \cdot \rho}(\eta + R) \]

\[H_0 = \mu_0^{-1/2} e^{\tau(x \cdot \rho-t)+i\sqrt{\tau^2+k^2}x \cdot \rho}(\theta + Q) \]

(1.10)
to define an indicator function and a support function

Definition 1. Define

\[I_\rho(\tau, t) := \int_{\partial \Omega} (\nu \wedge E_0) \cdot ((\Lambda \rho - \Lambda) (\nu \wedge E_0) \wedge \nu) \ dS \]
to be the indicator function

Definition 2. Define the support function of the convex hull of \(D \)

\[h_D(\rho) := \sup_{x \in D} x \cdot \rho \]

for a fixed \(\rho \in S^2 \).

Now we are ready to state our main result.

Theorem 1.1. We assume that the set \(\{ x \in \mathbb{R}^3 \mid x \cdot \rho = h_D(\rho) \} \cap \partial D \) consists of one point and the Gaussian curvature of \(\partial D \) is not vanishing at that point.

Then, we can recover \(h_D(\rho) \) by

\[h_D(\rho) = \inf\{ t \in \mathbb{R} \mid \lim_{\tau \to \infty} I_\rho(\tau, t) = 0 \}. \]

Moreover, if \(D \) is strictly convex, then we can reconstruct \(D \).
Remark 1. The proof of Theorem 1.1 mainly consists of showing the following limits:

\[\lim_{\tau \to \infty} I_\rho(\tau, t) = 0, \quad \text{when } t > h_D(\rho); \quad (1.11) \]

\[\liminf_{\tau \to \infty} I_\rho(\tau, h_D(\rho)) = C > 0; \quad (1.12) \]

Remark 2. A surface is said to be strictly convex if its Gaussian curvature is everywhere positive. Therefore, if the obstacle \(D \) is strictly convex, then Theorem 1.1 provides a reconstruction scheme of the shape of \(D \).

1.3. A key integral equality.

Lemma 1.2. Assume \((E, H)\) is a solution of (1.1) or (1.3) satisfying the boundary condition

\[\nu \wedge H|_{\partial D} = 0 \quad \text{and} \quad \nu \wedge E|_{\partial \Omega} = \nu \wedge E_0|_{\partial \Omega}. \]

We have

\[I := i\omega \int_{\partial \Omega} (\nu \wedge E_0) \cdot \left[(\nu \wedge H - \nu \wedge H_0) \wedge \nu \right] dS = i\omega \int_{\partial \Omega} (\nu \wedge E_0) \cdot (H - H_0) dS. \]

First by integration by parts, we have

\[\int_{\Omega \setminus D} \mu_0^{-1} (\nabla \wedge E) \cdot (\nabla \wedge E - \nabla \wedge E_0) - \omega^2 \varepsilon_0 E \cdot (E - E_0) dx \]

\[= - \left(\int_{\partial \Omega} - \int_{\partial D} \right) (\nu \wedge \mu_0^{-1} (\nabla \wedge E)) \cdot (E - E_0) dS = 0 \]

by the boundary conditions. Adding this to the following equality

\[I = \int_{\partial \Omega} (\nu \wedge E_0) \cdot (-i\omega H + i\omega H_0) dS \]

\[= \int_{\Omega \setminus D} -\mu_0^{-1} (\nabla \wedge E_0) \cdot (\nabla \wedge E) + \omega^2 \varepsilon_0 E_0 \cdot \bar{E} dx \]

\[+ \int_{\Omega} \mu_0^{-1} |\nabla \wedge E_0|^2 - \omega^2 \varepsilon_0 |E_0|^2 dx + \int_{\partial D} (\nu \wedge E_0) \cdot (-i\omega H) dS \]

with the last term vanishing due to the zero-boundary condition on the interface,

\[\int_{\partial D} (\nu \wedge E_0) \cdot (-i\omega H) dS = \int_{\partial D} (\nu \wedge E_0) \cdot (\bar{\nu} (\nu \wedge H) \wedge \nu) dS = 0, \]
we obtain (1.13). ■

Remark 3. Providing zero tangential electric field instead of magnetic field on the interface

\[(\nu \wedge E)_{\partial D} = 0,\]

we have a similar identity

\[-I = \int_{\Omega \setminus D} \mu_0^{-1} |\nabla \wedge (E - E_0)|^2 - \omega^2 \varepsilon_0 |E - E_0|^2 dx + \int_D \mu_0^{-1} |\nabla \wedge E_0|^2 - \omega^2 \varepsilon_0 |E_0|^2 dx.\]

(1.14)

1.4. Proof of the main theorem. First, we show (1.11) by propose an upper bound of the indicator function. Let \(\tilde{E} = E - E_0\) be the reflect solution in \(\Omega \setminus D\). It satisfies

\[
\begin{align*}
\nabla \wedge (\mu_0^{-1} \nabla \wedge \tilde{E}) - \omega^2 \varepsilon_0 \tilde{E} &= 0 \quad \text{in } \Omega \setminus \bar{D}, \\
\nu \wedge \tilde{E} |_{\partial \Omega} &= 0, \\
\nu \wedge (\mu_0^{-1} \nabla \wedge \tilde{E}) |_{\partial D} &= -\nu \wedge H_0 |_{\partial D} \in TH^{-1/2}(\partial D).
\end{align*}
\]

(1.15)

The well-posedness of this boundary value problem shows

\[\|\tilde{E}\|_{H(\nabla \wedge, \Omega \setminus D)} \leq C \|\nu \wedge H_0\|_{\partial D} \|H^{-1/2}(\partial D)^3} \leq C \|E_0\|_{H(\nabla \wedge, D)},\]

where we denote the general constant \(C > 0\). The second inequality is because for \(v \in H(\nabla \wedge, D),\)

\[
\int_{\partial D} (\nu \wedge H_0) \cdot v dx = -\int_D H_0 \cdot \nabla \wedge v + \nabla \wedge H_0 \cdot v dx
\]

\[= \int_D \frac{i}{\omega} \mu_1^{-1} (\nabla \wedge E_0) \cdot (\nabla \wedge v) + i\omega \varepsilon_0 E_0 \cdot v dx.\]

Notice that

\[\|H_0\|_{H(\nabla \wedge, D)} \leq C \|E_0\|_{H(\nabla \wedge, D)} \leq C (\|E_0\|_{L^2(D)}^3 + \|H_0\|_{L^2(D)}^3) \leq C \|H_0\|_{H(\nabla \wedge, D)}.\]

Therefore, (1.13) implies

\[I_\rho(\tau, t) \leq C (\|E_0\|_{L^2(D)}^3 + \|H_0\|_{L^2(D)}^3).\]

(1.16)

Plug in the CGO-solution (1.10), we obtain the following estimates:

\[\|E_0\|_{L^2(D)}^3 \leq C e^{2\tau(h_D(\rho) - t)\|\eta + R\|_{L^2(D)}}^3 \sim e^{2\tau(h_D(\rho) - t)} \quad \tau \gg 1,\]

\[\|H_0\|_{L^2(D)}^3 \leq C e^{2\tau(h_D(\rho) - t)\|\theta + Q\|_{L^2(D)}}^3 \sim \tau^2 e^{2\tau(h_D(\rho) - t)} \quad \tau \gg 1.\]

Therefore, we obtain

\[I_\rho(\tau, t) \leq C \tau e^{2\tau(h_D(\rho) - t)}\]

for \(\tau\) large enough, proving the first limit (1.11).

To show the second limit (1.12), it suffices to show the following two lemmas.
Lemma 1.3. If $t = h_D(\rho)$ in CGO-solution (1.10), then
\[
\liminf_{\tau \to \infty} \int_D |\nabla \wedge E_0|^2 \, dx = C,
\]
with some constant $C > 0$.

Lemma 1.4. If $t = h_D(\rho)$, then there exists a positive number c such that
\[
\frac{\omega^2 \varepsilon_0 \left(\int_{\Omega \setminus \bar{D}} |E - E_0|^2 \, dx + \int_D |E_0|^2 \, dx \right)}{\mu_0^{-1} \int_D |\nabla \wedge E_0|^2 \, dx} \leq c < 1,
\]
for τ large enough.

Proof of Lemma 1.3: This is the same proof as in the conductivity case by noticing the left hand side integral
\[
\int_D |\nabla \wedge E_0|^2 \, dx \geq C \|H_0\|_{L^2(D)^3}^2 \geq C \int_D \tau^2 e^{2\tau(x \cdot \rho - h_D(\rho))} \, dx.
\]

Proof of Lemma 1.4: The proof here is essentially the same as for the Helmholtz equation. It suffices to show
\[
\lim_{\tau \to \infty} \frac{\omega^2 \varepsilon_0 \int_{\Omega \setminus \bar{D}} |E - E_0|^2 \, dx}{\mu_0^{-1} \int_D |\nabla \wedge E_0|^2 \, dx} = \lim_{\tau \to \infty} \frac{\varepsilon_0 \int_{\Omega \setminus \bar{D}} |E - E_0|^2 \, dx}{\mu_0 \int_D |H_0|^2 \, dx} = 0.
\]
So we estimate the numerator. Consider the BVP
\[
\begin{cases}
\nabla \wedge p = i\omega \mu_0 q, & \nabla \wedge q = -i\omega \varepsilon_0 p - \frac{i}{\mu_0} \hat{E} \quad \text{in} \quad \Omega \setminus \bar{D}, \\
p |_{\partial \Omega} = 0, & q |_{\partial D} = 0.
\end{cases}
\] (1.17)

******or $\nu \wedge q |_{\partial D} = 0$? which boundary conditions can guarantee $p \in H^2(\Omega \setminus \bar{D})$?

Assume we propose a proper zero boundary condition for this BVP such that it is well-posed for $\hat{E} \in H(\nabla \wedge, \Omega \setminus \bar{D})$, i.e., there exists $p \in H^2(\Omega \setminus \bar{D})^3$, s.t.,
\[
\|p\|_{H^2(\Omega \setminus \bar{D})^3} \leq C \|\hat{E}\|_{L^2(\Omega \setminus \bar{D})^3}.
\]
By the Sobolev embedding, we have
\[
|p(x) - p(y)| \leq C |x - y|^{1/2} \|\hat{E}\|_{L^2(\Omega \setminus \bar{D})^3} \quad \text{for} \quad x, y \in \Omega \setminus \bar{D},
\]
\[
\sup_{x \in \Omega \setminus \bar{D}} |p(x)| \leq C \|\hat{E}\|_{L^2(\Omega \setminus \bar{D})^3}.
\]
Notice that
\[
\nabla \wedge (\mu_0^{-1} \nabla \wedge p) - \omega^2 \varepsilon_0 p = \hat{E}.
\]
Then, integration by parts shows
\[
\int_{\Omega \setminus D} |\tilde{E}|^2 \, dx = \int_{\Omega \setminus D} \tilde{E} \cdot (\nabla \wedge (\mu_0^{-1} \nabla \wedge p) - \omega^2 \varepsilon_0 p) \, dx
\]
\[
= \int_{\Omega \setminus D} \mu_0^{-1} (\nabla \wedge \tilde{E}) \cdot (\nabla \wedge p) - \omega^2 \varepsilon_0 \tilde{E} \cdot p \, dx
\]
\[
+ \left(\int_{\partial \Omega} - \int_{\partial D} \right) \tilde{E} \cdot (\nu \wedge (\mu_0^{-1} \nabla \wedge p)) \, dS
\]
\[
= \int_{\Omega \setminus D} \nabla \wedge (\mu_0^{-1} \nabla \wedge \tilde{E}) \cdot p - \omega^2 \varepsilon_0 \tilde{E} \cdot p \, dx
\]
\[
- \left(\int_{\partial \Omega} - \int_{\partial D} \right) \nu \wedge (\mu_0^{-1} \nabla \wedge \tilde{E}) \cdot p \, dS
\]
\[
= - \int_{\partial D} \nu \wedge (\mu_0^{-1} \nabla \wedge \tilde{E}) \cdot pdS.
\]
Denote by \(x_0 \) the point in \(\{ x \in \partial D \mid x \cdot \rho = h_D(\rho) \} \). We have
\[
\| \tilde{E} \|^2_{L^2(\Omega \setminus D)^3} = \int_{\partial D} (p(x_0) - p(x)) \cdot \nu \wedge (\mu_0^{-1} \nabla \wedge E_0) \, dS - \int_{D} \omega^2 \varepsilon_0 p(x_0) \cdot E_0 \, dx
\]
\[
\leq C \left\{ \int_{\partial D} |x - x_0|^{1/2} |\nu \wedge H_0| \, dS + \int_{D} |E_0| \, dx \right\} \| \tilde{E} \|^2_{L^2(\Omega \setminus D)^3}
\]
\[
\leq C \left\{ \int_{\partial D} \tau |x - x_0|^{1/2} e^{\tau(x_0 - h_D(\rho))} \, dS + \int_{D} e^{\tau(x_0 - h_D(\rho))} \, dx \right\} \| \tilde{E} \|^2_{L^2(\Omega \setminus D)^3}
\]
This yields
\[
\int_{\Omega \setminus D} |\tilde{E}|^2 \, dx \leq C \left\{ \tau^2 \left(\int_{\partial D} |x - x_0|^{1/2} e^{\tau(x_0 - h_D(\rho))} \, dS \right)^2 + \left(\int_{D} e^{\tau(x_0 - h_D(\rho))} \, dx \right)^2 \right\}.
\]
Then follow the step in Helmholtz case to show
\[
\lim_{\tau \to \infty} \tau \int_{\partial D} |x - x_0|^{1/2} e^{\tau(x_0 - h_D(\rho))} \, dS = 0,
\]
where the assumption of the Gaussian curvature is required.

REFERENCES

