DETERMINING INCLUSIONS FOR THE MAXWELL'S EQUATIONS

1. Enclosing obstacle

1.1. Direct Problems and CGO-solutions. Let Ω be a bounded domain in \mathbb{R}^{3} with a $C^{2,1}$-boundary and a connected complement $\mathbb{R}^{3} \backslash \bar{\Omega}$. Assume $D \subset \Omega$ is the obstacle or cavity. The electric permittivity ε_{0}, conductivity σ_{0} and magnetic permeability μ_{0} have the following properties: there are positive constants $\varepsilon_{m}, \varepsilon_{M}, \mu_{m}, \mu_{M}$ and σ_{M} such that for all $x \in \Omega$

$$
\varepsilon_{m} \leq \varepsilon_{0}(x) \leq \varepsilon_{M}, \quad \mu_{m} \leq \mu_{0}(x) \leq \varepsilon_{M}, \quad 0 \leq \sigma_{0}(x) \leq \sigma_{M}
$$

and $\varepsilon_{0}-\varepsilon_{c}, \sigma_{0}, \mu_{0}-\mu_{c} \in C_{0}^{3}(\Omega)$ for positive constants ε_{c} and μ_{c}.
Considering the boundary value problem of Maxwell's equations

$$
\begin{align*}
& \nabla \wedge \mathbf{E}=i \omega \mu_{0} \mathbf{H}, \quad \nabla \wedge \mathbf{H}=-i \omega \gamma_{0} \mathbf{E} \quad \text { in } \Omega \backslash \bar{D}, \\
& \nu \wedge \mathbf{E}=f \in T H_{\operatorname{Div}}^{1 / 2}(\partial \Omega) \quad \text { on } \partial \Omega, \tag{1.1}
\end{align*}
$$

where $\gamma_{0}=\varepsilon_{0}+i \frac{\sigma_{0}}{\omega}$, and zero tangential magnetic field condition on ∂D

$$
\begin{equation*}
\left.(\nu \wedge \mathbf{H})\right|_{\partial D}=0, \tag{1.2}
\end{equation*}
$$

here ν is the unit outer normal vector on ∂D. Through this note, we assume the non-dissipative case $\sigma_{0}=0$. Then (1.1) degenerates to

$$
\begin{equation*}
\nabla \wedge\left(\mu_{0}^{-1} \nabla \wedge \mathbf{E}\right)=\omega^{2} \varepsilon_{0} \mathbf{E} \quad \text { in } \Omega \backslash \bar{D} . \tag{1.3}
\end{equation*}
$$

Notations. If F is a function space on $\partial \Omega$, the subspace of all those $f \in F^{3}$ which are tangent to $\partial \Omega$ (orthogonal to the exterior unit normal vector field of $\partial \Omega)$ is denoted by $T F$. For example, for $u \in\left(H^{s}(\partial \Omega)\right)^{3}(s \leq 2)$, we have the decomposition $u=u_{t}+u_{\nu} \nu$, where the tangential component $u_{t}=-\nu \wedge(\nu \wedge u) \in$ $T H^{s}(\partial \Omega)$ and the normal component $u_{\nu}=u \cdot \nu \in H^{s}(\partial \Omega)$. Therefore, we have a decomposition of space $H^{s}(\partial \Omega)^{3}=T H^{s}(\partial \Omega) \oplus H^{s}(\partial \Omega)$. For a bounded domain Ω in \mathbb{R}^{3}, we denote

$$
\begin{aligned}
& T H_{\operatorname{Div}}^{1 / 2}(\partial \Omega)=\left\{u \in H^{1 / 2}(\partial \Omega)^{3} \mid \operatorname{Div}(u) \in H^{1 / 2}(\partial \Omega)\right\}, \\
& H_{\operatorname{Div}}^{1}(\Omega)=\left\{u \in H^{1}(\Omega)^{3} \mid \operatorname{Div}\left(\left.\nu \wedge u\right|_{\partial \Omega}\right) \in H^{1 / 2}(\partial \Omega)\right\},
\end{aligned}
$$

with norms

$$
\|u\|_{T H_{\operatorname{Div}}^{1 / 2}(\partial \Omega)}^{2}=\|u\|_{H^{1 / 2}(\partial \Omega)^{3}}^{2}+\|\operatorname{Div}(u)\|_{H^{1 / 2}(\partial \Omega)}^{2},
$$

$$
\|u\|_{H_{\operatorname{Div}}^{1}}^{2}(\Omega)=\|u\|_{H^{1}(\Omega)^{3}}^{2}+\left\|\operatorname{Div}\left(\left.\nu \wedge u\right|_{\Omega \Omega}\right)\right\|_{H^{1 / 2}(\partial \Omega)}^{2},
$$

where Div is the surface divergence. There are natural inner products making them Hilbert spaces (see [9]). We also have the Hilbert space

$$
H(\nabla \wedge, \Omega)=\left\{u \in L^{2}(\Omega)^{3} \mid \nabla \wedge u \in L^{2}(\Omega)^{3}\right\}
$$

with norm

$$
\|u\|_{H(\nabla \wedge, \Omega)}^{2}=\|u\|_{L^{2}(\Omega)^{3}}^{2}+\|\nabla \wedge u\|_{L^{2}(\Omega)^{3}}^{2} .
$$

In addition, we define the weighted L^{2} space in \mathbb{R}^{3} :

$$
L_{\delta}^{2}=\left\{f \in L_{l o c}^{2}\left(\mathbb{R}^{3}\right):\|f\|_{L_{\delta}^{2}}^{2}=\int\left(1+|x|^{2}\right)^{\delta}|f(x)|^{2} d x<\infty\right\} .
$$

Admissibility. It can be shown that for $f \in T H^{1 / 2}(\partial \Omega)$ and $g \in T H^{-1 / 2}(\partial D)$, the boundary value problem of Maxwell's equations

$$
\left\{\begin{array}{l}
\nabla \wedge \mathbf{E}=i \omega \mu_{0} \mathbf{H}, \quad \nabla \wedge \mathbf{H}=-i \omega \gamma_{0} \mathbf{E} \text { in } \Omega \backslash \bar{D}, \tag{1.4}\\
\left.\nu \wedge \mathbf{E}\right|_{\partial \Omega}=f \\
\left.\nu \wedge \mathbf{H}\right|_{\partial D}=g
\end{array}\right.
$$

has a unique solution $(\mathbf{E}, \mathbf{H}) \in H(\nabla \wedge, \Omega \backslash \bar{D}) \times H(\nabla \wedge, \Omega \backslash \bar{D})$, except for a discrete set of magnetic resonance frequencies $\left\{\omega_{n}\right\}$. A proof for Dirichlet problem can be found in [9]. Moreover, we have the continuous dependency of the $H(\nabla \wedge)$-norm of the solution on the boundary condition

$$
\begin{align*}
& \|\mathbf{E}\|_{H(\nabla \wedge, \Omega \backslash \bar{D})} \leq C\left(\|f\|_{H^{1 / 2}(\partial \Omega)^{3}}+\|g\|_{H^{-1 / 2}(\partial D)^{3}}\right), \tag{1.5}\\
& \|\mathbf{H}\|_{H(\nabla \wedge, \Omega \backslash \bar{D})} \leq C\left(\|f\|_{H^{1 / 2}(\partial \Omega)^{3}}+\|g\|_{H^{-1 / 2}(\partial D)^{3}}\right) .
\end{align*}
$$

At the same time, a similar proof as in [6] shows that the BVP (1.4) is well posed for $\left.f \in T H_{\text {Div }}^{1 / 2}(\partial \Omega)\right)$, and $g \in T H_{\text {Div }}^{1 / 2}(\partial D)$), i.e., except for the resonance frequencies there exists a unique solution $(\mathbf{E}, \mathbf{H}) \in H_{\operatorname{Div}}^{1}(\Omega \backslash \bar{D}) \times H_{\operatorname{Div}}^{1}(\Omega \backslash \bar{D})$ s.t.,

$$
\begin{aligned}
& \|\mathbf{E}\|_{H_{\operatorname{Div}}^{1}}(\Omega \backslash \bar{D}) \leq C\left(\|f\|_{T H_{\operatorname{Div}}^{1 / 2}(\partial \Omega)}+\|g\|_{T H_{\operatorname{Div}}^{1 / 2}(\partial D)}\right), \\
& \left.\|\mathbf{H}\|_{H_{\operatorname{Div}}^{1}}(\Omega \backslash \bar{D}) \leq C\left(\|f\|_{T H_{\operatorname{Div}}^{1 / 2}(\partial \Omega)}+\|g\|_{T H_{\operatorname{Div}}^{1 / 2}(\partial D)}\right)\right)
\end{aligned}
$$

Let $\left(\mathbf{E}_{0}, \mathbf{H}_{0}\right)$ denotes the solution without the obstacle.
With well-posedness of the direct problem, the impedance map

$$
\Lambda_{D}\left(\left.\nu \wedge \mathbf{E}\right|_{\partial \Omega}\right)=\left.\nu \wedge \mathbf{H}\right|_{\partial \Omega}
$$

where ν is the unit outer normal on $\partial \Omega$, is bounded from $T H^{1 / 2}(\partial \Omega)$ to $T H^{-1 / 2}(\partial \Omega)$ ([9]). Moreover, it is an isomorphism from $T H_{\text {Div }}^{1 / 2}(\partial \Omega)$ to $T H_{\text {Div }}^{1 / 2}(\partial \Omega)$, see [6]. The reconstruction of the obstacle will use the CGO-solution constructed in [5]. CGO-solution In [5], the Maxwell's equation was reduced to an 8×8 second
order Schrödinger vector equation by introducing the generalized Sommerfeld potential. A vector CGO-solution (Sommerfeld potential) was constructed for the Schrödinger equation, and the proof of the uniqueness is facilitated compared to [6]. Same technique also appears in dealing with the inverse boundary value problems for Maxwell's equations with partial data [2]. The construction is in \mathbb{R}^{3}.
Define the scalar fields Φ and Ψ as

$$
\Phi=\frac{i}{\omega} \nabla \cdot\left(\gamma_{0} \mathbf{E}\right), \quad \Psi=\frac{i}{\omega} \nabla \cdot\left(\mu_{0} \mathbf{H}\right)
$$

Under some assumptions on $P h i$ and $P s i$, we have Maxwell's equation is equivalent to

$$
\nabla \wedge \mathbf{E}-\frac{1}{\gamma} \nabla\left(\frac{1}{\mu} \Psi\right)-i \omega \mu \mathbf{H}=0, \quad \nabla \wedge \mathbf{H}+\frac{1}{\mu} \nabla\left(\frac{1}{\gamma} \Phi\right)+i \omega \gamma \mathbf{E}=0 .
$$

Moreover, in this case, Φ and Ψ vanish. Let $X=(\phi, e, h, \psi)^{T} \in\left(\mathcal{D}^{\prime}\right)^{8}$ with

$$
\begin{array}{cl}
e=\gamma_{0}^{1 / 2} \mathbf{E}, & h=\mu_{0}^{1 / 2} \mathbf{H}, \\
\phi=\frac{1}{\gamma_{0} \mu_{0}^{1 / 2}} \Phi, \quad \psi=\frac{1}{\gamma_{0}^{1 / 2} \mu_{0}} \Psi .
\end{array}
$$

Then X satisfies

$$
\begin{equation*}
(P(i \nabla)-k+V) X=0, \quad \text { in } \Omega \tag{1.6}
\end{equation*}
$$

where

$$
\begin{gathered}
P(i \nabla)=\left(\begin{array}{cccc}
0 & \nabla \cdot & 0 & 0 \\
\nabla & 0 & \nabla \wedge & 0 \\
0 & -\nabla \wedge & 0 & \nabla \\
0 & 0 & \nabla \cdot & 0
\end{array}\right), \\
V=(k-\kappa) \mathbf{1}_{8}+\left(\left(\begin{array}{cccc}
0 & \nabla \cdot & 0 & 0 \\
\nabla & 0 & -\nabla \wedge & 0 \\
0 & \nabla \wedge & 0 & \nabla \\
0 & 0 & \nabla \cdot & 0
\end{array}\right) D\right) D^{-1}, \\
D=\operatorname{diag}\left(\mu_{0}^{1 / 2}, \gamma_{0}^{1 / 2} \mathbf{1}_{3}, \mu_{0}^{1 / 2} \mathbf{1}_{3}, \gamma_{0}^{1 / 2}\right), \quad \kappa=\omega\left(\gamma_{0} \mu_{0}\right)^{1 / 2}, \quad k=\omega\left(\varepsilon_{c} \mu_{c}\right)^{1 / 2} .
\end{gathered}
$$

A desirable property of this operator is

$$
(P(i \nabla)-k+V)\left(P(i \nabla)+k-V^{T}\right)=-\left(\Delta+k^{2}\right) \mathbf{1}_{8}+Q,
$$

where

$$
Q=V P(i \nabla)-P(i \nabla) V^{T}+k\left(V+V^{T}\right)-V V^{T}
$$

is a zeroth-order matrix multiplier. Based on this, by writing an ansatz for X, we define the generalized Sommerfeld potential Y

$$
X=\underset{3}{\left(P(i \nabla)+k-V^{T}\right) Y .}
$$

So it satisfies the Schrödinger equation

$$
\begin{equation*}
\left(-\Delta-k^{2}+Q\right) Y=0 \tag{1.7}
\end{equation*}
$$

The following CGO-solution is due to the Faddeev's Kernel. Let $\zeta \in \mathbb{C}^{3}$ be a vector with $\zeta \cdot \zeta=k^{2}$. Suppose $y_{0, \zeta} \in \mathbb{C}^{8}$ is a constant vector with respect to x and bounded with respect to ζ, there exist a unique solution of (1.7) of the form

$$
Y_{\zeta}(x)=e^{i x \cdot \zeta}\left(y_{0, \zeta}-v_{\zeta}(x)\right),
$$

where $v_{\zeta}(x) \in\left(L_{\delta+1}^{2}\right)^{8}$, and

$$
\left\|v_{\zeta}\right\|_{\left(L_{\delta+1}\right)^{2}} \leq C /|\zeta|
$$

for $\delta \in(-1,0)$. Moreover, one can show that $v_{\zeta} \in H^{s}(\Omega)^{8}$ for $0 \leq s \leq 2$, e.g., see [1], and

$$
\begin{equation*}
\left\|v_{\zeta}(x)\right\|_{H^{s}(\Omega)^{8}} \leq C|\zeta|^{s-1} \tag{1.8}
\end{equation*}
$$

Lemma 3.1 in [5] states that if we choose $y_{0, \zeta}$ such that the first and the last components of $(P(\zeta)-k) y_{0, \zeta}$ vanish, then for large $|\zeta|, X_{\zeta}$ provides the solution of the original Maxwell's equation.
Let's examine this X_{ζ} more closely by giving specific choices of vectors.

$$
\begin{equation*}
X_{\zeta}=e^{i x \cdot \zeta}\left[(P(-\zeta)+k) y_{0, \zeta}+\left(P(-\zeta) v_{\zeta}+P(i \nabla) v_{\zeta}-V^{T} y_{0, \zeta}+k v_{\zeta}-V^{T} v_{\zeta}\right)\right] \tag{1.9}
\end{equation*}
$$

As in [5], we choose

$$
y_{0, \zeta}=\frac{1}{|\zeta|}(\zeta \cdot a, k a, k b, \zeta \cdot b)^{T},
$$

where

$$
\zeta=-i \tau \rho+\sqrt{\tau^{2}+k^{2}} \rho^{\perp}
$$

with $\rho, \rho^{\perp} \in \mathbb{S}^{2}$ and $\rho \cdot \rho^{\perp}=0 . \tau>0$ is used to control the size of $|\zeta|=\sqrt{2 \tau^{2}+k^{2}}$. Taking $\tau \rightarrow \infty$, we have

$$
\frac{\zeta}{|\zeta|} \rightarrow \hat{\zeta}=\frac{1}{\sqrt{2}}\left(-i \rho+\rho^{\perp}\right) .
$$

Choosing a and b such that

$$
\hat{\zeta} \cdot b=1, \quad \hat{\zeta} \cdot a=0
$$

e.g., when $n \geq 3$, let

$$
a \perp \rho, a \perp \rho^{\perp} ; \quad b=\frac{\overline{\hat{\zeta}}}{|\hat{\zeta}|^{2}} .
$$

The choice of $y_{0, \zeta}$ is such that

$$
x_{0, \zeta}:=(P(-\zeta)+k) y_{0, \zeta}=\frac{1}{|\zeta|}\left(\begin{array}{c}
0 \\
-(\zeta \cdot a) \zeta-k \zeta \wedge b+k^{2} a \\
k \zeta \wedge a-(\zeta \cdot b) \zeta+k^{2} b \\
0
\end{array}\right) .
$$

It's easy to see that

$$
\begin{gathered}
\eta=\left(x_{0, \zeta}\right)_{2} \rightarrow-k \hat{\zeta} \wedge b(\sim \mathcal{O}(1)) \\
\theta=\left(x_{0, \zeta}\right)_{3} \sim \mathcal{O}(\tau)
\end{gathered}
$$

as $\tau \rightarrow \infty$. Then X_{ζ} is written in the form

$$
X_{\zeta}=e^{\tau(x \cdot \rho)+i \sqrt{\tau^{2}+k^{2}} x \cdot \rho^{\perp}}\left(x_{0, \zeta}+r_{\zeta}(x)\right)
$$

where

$$
r_{\zeta}=P(-\zeta) v_{\zeta}+P(i \nabla) v_{\zeta}-V^{T} y_{0, \zeta}+k v_{\zeta}-V^{T} v_{\zeta}
$$

satisfying for $C>0$ independent of ζ.

$$
\left\|r_{\zeta}\right\|_{L_{\delta}^{2}(\Omega)^{3}} \leq C
$$

Hence the CGO solution of the Maxwell's equation is given by

$$
\begin{aligned}
\mathbf{E}_{0} & =\varepsilon_{0}^{-1 / 2} e^{\tau(x \cdot \rho)+i \sqrt{\tau^{2}+k^{2}} x \cdot \rho^{\perp}}(\eta+R) \\
\mathbf{H}_{0} & =\mu_{0}^{-1 / 2} e^{\tau(x \cdot \rho)+i \sqrt{\tau^{2}+k^{2}} x \cdot \rho^{\perp}}(\theta+Q)
\end{aligned}
$$

where $\eta=\mathcal{O}(1), \theta=\mathcal{O}(\tau), R, Q \in L_{\delta}^{2}\left(\mathbb{R}^{3}\right)$ are bounded for $\tau \gg 1$.
1.2. Main result. Adding a parameter t in the weight, we use the CGO solution

$$
\begin{align*}
& \mathbf{E}_{0}=\varepsilon_{0}^{-1 / 2} e^{\tau(x \cdot \rho-t)+i \sqrt{\tau^{2}+k^{2}} x \cdot \rho^{\perp}}(\eta+R) \tag{1.10}\\
& \mathbf{H}_{0}=\mu_{0}^{-1 / 2} e^{\tau(x \cdot \rho-t)+i \sqrt{\tau^{2}+k^{2}} x \cdot \rho^{\perp}}(\theta+Q)
\end{align*}
$$

to define an indicator function and a support function
Definition 1. Define

$$
I_{\rho}(\tau, t):=\int_{\partial \Omega}\left(\nu \wedge \mathbf{E}_{0}\right) \cdot\left(\overline{\left(\Lambda_{D}-\Lambda_{\emptyset}\right)\left(\nu \wedge \mathbf{E}_{0}\right) \wedge \nu}\right) d S
$$

to be the indicator function
Definition 2. Define the support function of the convex hull of D

$$
h_{D}(\rho):=\sup _{x \in D} x \cdot \rho
$$

for a fixed $\rho \in S^{2}$.
Now we are ready to state our main result.
Theorem 1.1. We assume that the set $\left\{x \in \mathbb{R}^{3} \mid x \cdot \rho=h_{D}(\rho)\right\} \cap \partial D$ consists of one point and the Gaussian curvature of ∂D is not vanishing at that point. Then, we can recover $h_{D}(\rho)$ by

$$
h_{D}(\rho)=\inf \left\{t \in \mathbb{R} \mid \lim _{\tau \rightarrow \infty} I_{\rho}(\tau, t)=0\right\} .
$$

Moreover, if D is strictly convex, then we can reconstruct D.

Remark 1. The proof of Theorem 1.1 mainly consists of showing the following limits:

$$
\begin{gather*}
\lim _{\tau \rightarrow \infty} I_{\rho}(\tau, t)=0, \quad \text { when } t>h_{D}(\rho) ; \tag{1.11}\\
\liminf _{\tau \rightarrow \infty} I_{\rho}\left(\tau, h_{D}(\rho)\right)=C>0 \tag{1.12}
\end{gather*}
$$

Remark 2. A surface is said to be strictly convex if its Gaussian curvature is everywhere positive. Therefore, if the obstacle D is strictly convex, then Theorem 1.1 provides a reconstruction scheme of the shape of D.

1.3. A key integral equality.

Lemma 1.2. Assume (\mathbf{E}, \mathbf{H}) is a solution of (1.1) or (1.3) satisfying the boundary condition

$$
\left.\nu \wedge \mathbf{H}\right|_{\partial D}=0 \quad \text { and }\left.\quad \nu \wedge \mathbf{E}\right|_{\partial \Omega}=\left.\nu \wedge \mathbf{E}_{0}\right|_{\partial \Omega} .
$$

We have

$$
\begin{align*}
& i \omega \int_{\partial \Omega}\left(\nu \wedge \mathbf{E}_{0}\right) \cdot\left[\overline{\left(\nu \wedge \mathbf{H}-\nu \wedge \mathbf{H}_{0}\right)} \wedge \nu\right] d S \\
& =\int_{\Omega \backslash \bar{D}} \mu_{0}^{-1}\left|\nabla \wedge \mathbf{E}-\nabla \wedge \mathbf{E}_{0}\right|^{2}-\omega^{2} \varepsilon_{0}\left|\mathbf{E}-\mathbf{E}_{0}\right|^{2} d x \\
& +\int_{D} \mu_{0}^{-1}\left|\nabla \wedge \mathbf{E}_{0}\right|^{2}-\omega^{2} \varepsilon_{0}\left|\mathbf{E}_{0}\right|^{2} d x \tag{1.13}
\end{align*}
$$

Proof: Denote

$$
I:=i \omega \int_{\partial \Omega}\left(\nu \wedge \mathbf{E}_{0}\right) \cdot\left[\overline{\left(\nu \wedge \mathbf{H}-\nu \wedge \mathbf{H}_{0}\right) \wedge \nu}\right] d S=i \omega \int_{\partial \Omega}\left(\nu \wedge \mathbf{E}_{0}\right) \cdot\left(\overline{\mathbf{H}-\mathbf{H}_{0}}\right) d S
$$

First by integration by parts, we have

$$
\begin{aligned}
& \int_{\Omega \backslash \bar{D}} \mu_{0}^{-1}(\nabla \wedge \mathbf{E}) \cdot\left(\overline{\nabla \wedge \mathbf{E}-\nabla \wedge \mathbf{E}_{0}}\right)-\omega^{2} \varepsilon_{0} \mathbf{E} \cdot\left(\overline{\mathbf{E}-\mathbf{E}_{0}}\right) d x \\
= & -\left(\int_{\partial \Omega}-\int_{\partial D}\right)\left(\nu \wedge \mu_{0}^{-1}(\nabla \wedge \mathbf{E})\right) \cdot\left(\overline{\mathbf{E}-\mathbf{E}_{0}}\right) d S=0
\end{aligned}
$$

by the boundary conditions. Adding this to the following equality

$$
\begin{aligned}
I= & \int_{\partial \Omega}\left(\nu \wedge \mathbf{E}_{0}\right) \cdot\left(\overline{-i \omega \mathbf{H}+i \omega \mathbf{H}_{0}}\right) d S \\
= & \int_{\Omega \backslash \bar{D}}-\mu_{0}^{-1}\left(\nabla \wedge \mathbf{E}_{0}\right) \cdot(\overline{\nabla \wedge \mathbf{E}})+\omega^{2} \varepsilon_{0} \mathbf{E}_{0} \cdot \overline{\mathbf{E}} d x \\
& +\int_{\Omega} \mu_{0}^{-1}\left|\nabla \wedge \mathbf{E}_{0}\right|^{2}-\omega^{2} \varepsilon_{0}\left|\mathbf{E}_{0}\right|^{2} d x+\int_{\partial D}\left(\nu \wedge \mathbf{E}_{0}\right) \cdot(\overline{-i \omega \mathbf{H}}) d S
\end{aligned}
$$

with the last term vanishing due to the zero-boundary condition on the interface,

$$
\int_{\partial D}\left(\nu \wedge \mathbf{E}_{0}\right) \cdot(\overline{-i \omega \mathbf{H}}) d S=\int_{\partial D}\left(\nu \wedge \mathbf{E}_{0}\right) \cdot(\overline{-i \omega(\nu \wedge \mathbf{H}) \wedge \nu}) d S=0,
$$

we obtain (1.13).

Remark 3. Providing zero tangential electric field instead of magnetic field on the interface

$$
\left.(\nu \wedge \mathbf{E})\right|_{\partial D}=0,
$$

we have a similar identity

$$
\begin{equation*}
-I=\int_{\Omega \backslash \bar{D}} \mu_{0}^{-1}\left|\nabla \wedge \mathbf{E}-\nabla \wedge \mathbf{E}_{0}\right|^{2}-\omega^{2} \varepsilon_{0}\left|\mathbf{E}-\mathbf{E}_{0}\right|^{2} d x+\int_{D} \mu_{0}^{-1}\left|\nabla \wedge \mathbf{E}_{0}\right|^{2}-\omega^{2} \varepsilon_{0}\left|\mathbf{E}_{0}\right|^{2} d x \tag{1.14}
\end{equation*}
$$

1.4. Proof of the main theorem. First, we show (1.11) by propose an upper bound of the indicator function. Let $\tilde{\mathbf{E}}=\mathbf{E}-\mathbf{E}_{0}$ be the reflect solution in $\Omega \backslash \bar{D}$. It satisfies

$$
\left\{\begin{array}{l}
\nabla \wedge\left(\mu_{0}^{-1} \nabla \wedge \tilde{\mathbf{E}}\right)-\omega^{2} \varepsilon_{0} \tilde{\mathbf{E}}=0 \quad \text { in } \Omega \backslash \bar{D}, \tag{1.15}\\
\nu \wedge \tilde{\mathbf{E}} \mid \partial \Omega=0, \\
\left.\nu \wedge\left(\mu_{0}^{-1} \nabla \wedge \tilde{\mathbf{E}}\right)\right|_{\partial D}=-\left.\nu \wedge \mathbf{H}_{0}\right|_{\partial D} \in T H^{-1 / 2}(\partial D) .
\end{array}\right.
$$

The well-posedness of this boundary value problem shows

$$
\|\tilde{\mathbf{E}}\|_{H(\nabla \wedge, \Omega \backslash \bar{D})} \leq C\left\|\left.\nu \wedge \mathbf{H}_{0}\right|_{\partial D}\right\|_{H^{-1 / 2}(\partial D)^{3}} \leq C\left\|\mathbf{E}_{0}\right\|_{H(\nabla \wedge, D)},
$$

where we denote the general constant $C>0$. The second inequality is because for $v \in H(\nabla \wedge, D)$,

$$
\begin{aligned}
\int_{\partial D}\left(\nu \wedge \mathbf{H}_{0}\right) \cdot v d x & =-\int_{D} \mathbf{H}_{0} \cdot \nabla \wedge v+\nabla \wedge \mathbf{H}_{0} \cdot v d x \\
& =\int_{D} \frac{i}{\omega} \mu^{-1}\left(\nabla \wedge \mathbf{E}_{0}\right) \cdot(\nabla \wedge v)+i \omega \varepsilon_{0} \mathbf{E}_{0} \cdot v d x
\end{aligned}
$$

Notice that
$\left\|\mathbf{H}_{0}\right\|_{H(\nabla \wedge, D)} \leq C\left\|\mathbf{E}_{0}\right\|_{H(\nabla \wedge, D)} \leq C\left(\left\|\mathbf{E}_{0}\right\|_{L^{2}(D)^{3}}+\left\|\mathbf{H}_{0}\right\|_{L^{2}(D)^{3}}\right) \leq C\left\|\mathbf{H}_{0}\right\|_{H(\nabla \wedge, D)}$.
Therefore, (1.13) implies

$$
\begin{equation*}
I_{\rho}(\tau, t) \leq C\left(\left\|\mathbf{E}_{0}\right\|_{L^{2}(D)^{3}}+\left\|\mathbf{H}_{0}\right\|_{L^{2}(D)^{3}}\right) . \tag{1.16}
\end{equation*}
$$

Plug in the CGO-solution (1.10), we obtain the following estimates:

$$
\begin{gathered}
\left\|\mathbf{E}_{0}\right\|_{L^{2}(D)^{3}}^{2} \leq C e^{2 \tau\left(h_{D}(\rho)-t\right)}\|\eta+R\|_{L^{2}(D)^{3}}^{2} \sim e^{2 \tau\left(h_{D}(\rho)-t\right)} \quad \tau \gg 1, \\
\left\|\mathbf{H}_{0}\right\|_{L^{2}(D)^{3}}^{2} \leq C e^{2 \tau\left(h_{D}(\rho)-t\right)}\|\theta+Q\|_{L^{2}(D)^{3}}^{2} \sim \tau^{2} e^{2 \tau\left(h_{D}(\rho)-t\right)} \quad \tau \gg 1 .
\end{gathered}
$$

Therefore, we obtain

$$
I_{\rho}(\tau, t) \leq C \tau e^{2 \tau\left(h_{D}(\rho)-t\right)}
$$

for τ large enough, proving the first limit (1.11).
To show the second limit (1.12), it suffices to show the following two lemmas.

Lemma 1.3. If $t=h_{D}(\rho)$ in CGO-solution (1.10), then

$$
\liminf _{\tau \rightarrow \infty} \int_{D}\left|\nabla \wedge \mathbf{E}_{0}\right|^{2} d x=C
$$

with some constant $C>0$.
Lemma 1.4. If $t=h_{D}(\rho)$, then there exists a positive number c such that

$$
\frac{\omega^{2} \varepsilon_{0}\left(\int_{\Omega \backslash \bar{D}}\left|\mathbf{E}-\mathbf{E}_{0}\right|^{2} d x+\int_{D}\left|\mathbf{E}_{0}\right|^{2} d x\right)}{\mu_{0}^{-1} \int_{D}\left|\nabla \wedge \mathbf{E}_{0}\right|^{2} d x} \leq c<1
$$

for τ large enough.
Proof of Lemma 1.3: This is the same proof as in the conductivity case by noticing the left hand side integral

$$
\int_{D}\left|\nabla \wedge \mathbf{E}_{0}\right|^{2} d x \geq C\left\|\mathbf{H}_{0}\right\|_{L^{2}(D)^{3}}^{2} \geq C \int_{D} \tau^{2} e^{2 \tau\left(x \cdot \rho-h_{D}(\rho)\right)} d x
$$

Proof of Lemma 1.4: The proof here is essentially the same as for the Helmholtz equation. It suffices to show

$$
\lim _{\tau \rightarrow \infty} \frac{\omega^{2} \varepsilon_{0} \int_{\Omega \backslash \bar{D}}\left|\mathbf{E}-\mathbf{E}_{0}\right|^{2} d x}{\mu_{0}^{-1} \int_{D}\left|\nabla \wedge \mathbf{E}_{0}\right|^{2} d x}=\lim _{\tau \rightarrow \infty} \frac{\varepsilon_{0} \int_{\Omega \backslash \bar{D}}\left|\mathbf{E}-\mathbf{E}_{0}\right|^{2} d x}{\mu_{0} \int_{D}\left|\mathbf{H}_{0}\right|^{2} d x}=0
$$

So we estimate the numerator. Consider the BVP

$$
\left\{\begin{array}{l}
\nabla \wedge p=i \omega \mu_{0} q, \quad \nabla \wedge q=-i \omega \varepsilon_{0} p-\frac{i}{\omega} \overline{\tilde{\mathbf{E}}} \text { in } \Omega \backslash \bar{D} \tag{1.17}\\
\left.p\right|_{\partial \Omega}=0 \\
\left.q\right|_{\partial D}=0
\end{array}\right.
$$

$* * * * * * * * * * * *$ or $\left.\nu \wedge q\right|_{\partial D}=0$? which boundary conditions can guarantee $p \in$ $H^{2}(\Omega \backslash \bar{D})$?
Assume we propose a proper zero boundary condition for this BVP such that it is well-posed for $\tilde{\mathbf{E}} \in H(\nabla \wedge, \Omega \backslash \bar{D})$, i.e., there exists $p \in H^{2}(\Omega \backslash \bar{D})^{3}$, s.t.,

$$
\|p\|_{H^{2}(\Omega \backslash \bar{D})^{3}} \leq C\|\tilde{\mathbf{E}}\|_{L^{2}(\Omega \backslash \bar{D})^{3}} .
$$

By the Sobolev embedding, we have

$$
\begin{aligned}
&|p(x)-p(y)| \leq C|x-y|^{1 / 2}\|\tilde{\mathbf{E}}\|_{L^{2}(\Omega \backslash \bar{D})^{3}} \text { for } x, y \in \Omega \backslash \bar{D} \\
& \sup _{x \in \Omega \backslash \bar{D}}|p(x)| \leq C\|\tilde{\mathbf{E}}\|_{L^{2}(\Omega \backslash \bar{D})^{3}} .
\end{aligned}
$$

Notice that

$$
\nabla \wedge\left(\mu_{0}^{-1} \nabla \wedge p_{8}\right)-\omega^{2} \varepsilon_{0} p=\overline{\tilde{\mathbf{E}}}
$$

Then, integration by parts shows

$$
\begin{aligned}
\int_{\Omega \backslash \bar{D}}|\tilde{\mathbf{E}}|^{2} d x= & \int_{\Omega \backslash \bar{D}} \tilde{\mathbf{E}} \cdot\left(\nabla \wedge\left(\mu_{0}^{-1} \nabla \wedge p\right)-\omega^{2} \varepsilon_{0} p\right) d x \\
= & \int_{\Omega \backslash \bar{D}} \mu_{0}^{-1}(\nabla \wedge \tilde{\mathbf{E}}) \cdot(\nabla \wedge p)-\omega^{2} \varepsilon_{0} \tilde{\mathbf{E}} \cdot p d x \\
& +\left(\int_{\partial \Omega}-\int_{\partial D}\right) \tilde{\mathbf{E}} \cdot\left(\nu \wedge\left(\mu_{0}^{-1} \nabla \wedge p\right)\right) d S \\
= & \int_{\Omega \backslash \bar{D}} \nabla \wedge\left(\mu_{0}^{-1} \nabla \wedge \tilde{\mathbf{E}}\right) \cdot p-\omega^{2} \varepsilon_{0} \tilde{\mathbf{E}} \cdot p d x \\
& -\left(\int_{\partial \Omega}-\int_{\partial D}\right) \nu \wedge\left(\mu_{0}^{-1} \nabla \wedge \tilde{\mathbf{E}}\right) \cdot p d S \\
= & -\int_{\partial D} \nu \wedge\left(\mu_{0}^{-1} \nabla \wedge \mathbf{E}_{0}\right) \cdot p d S .
\end{aligned}
$$

Denote by x_{0} the point in $\left\{x \in \partial D \mid x \cdot \rho=h_{D}(\rho)\right\}$. We have

$$
\begin{aligned}
\|\tilde{\mathbf{E}}\|_{L^{2}(\Omega \backslash \bar{D})^{3}}^{2} & =\int_{\partial D}\left(p\left(x_{0}\right)-p(x)\right) \cdot \nu \wedge\left(\mu_{0}^{-1} \nabla \wedge \mathbf{E}_{0}\right) d S-\int_{D} \omega^{2} \varepsilon_{0} p\left(x_{0}\right) \cdot \mathbf{E}_{0} d x \\
& \leq C\left\{\int_{\partial D}\left|x-x_{0}\right|^{1 / 2}\left|\nu \wedge \mathbf{H}_{0}\right| d S+\int_{D}\left|\mathbf{E}_{0}\right| d x\right\}\|\tilde{\mathbf{E}}\|_{L^{2}(\Omega \backslash \bar{D})^{3}} \\
& \leq C\left\{\int_{\partial D} \tau\left|x-x_{0}\right|^{1 / 2} e^{\tau\left(x \cdot \rho-h_{D}(\rho)\right)} d S+\int_{D} e^{\tau\left(x \cdot \rho-h_{D}(\rho)\right)} d x\right\}\|\tilde{\mathbf{E}}\|_{L^{2}(\Omega \backslash \bar{D})^{3}}
\end{aligned}
$$

This yields

$$
\int_{\Omega \backslash \bar{D}}|\tilde{\mathbf{E}}|^{2} d x \leq C\left\{\tau^{2}\left(\int_{\partial D}\left|x-x_{0}\right|^{1 / 2} e^{\tau\left(x \cdot \rho-h_{D}(\rho)\right)} d S\right)^{2}+\left(\int_{D} e^{\tau\left(x \cdot \rho-h_{D}(\rho)\right)} d x\right)^{2}\right\} .
$$

Then follow the step in Helmholtz case to show

$$
\lim _{\tau \rightarrow \infty} \tau \int_{\partial D}\left|x-x_{0}\right|^{1 / 2} e^{\tau\left(x \cdot \rho-h_{D}(\rho)\right)} d S=0
$$

where the assumption of the Gaussian curvature is required.

References

[1] A. Bukhgeim and G. Uhlmann, Recovering a Potential from Partial Cauchy Data, Commun. PDE. 27 (2002), no. 3\&4, 653-668.
[2] Inverse Boundary Value Problem for Maxwell's Equations with Local Data (To appear).
[3] M. Ikehata, How to draw a picture of an unknown inclusion from boundary measurements: Two mathematical inversion algorithms, J. Inverse Ill-Posed Problems 7 (1999), 255-271.
[4] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart/Willey, New York, 1986.
[5] P. Ola; E. Somersalo, Electromagnetic Inverse Problems and Generalized Sommerfeld Potentials, SIAM J. Appl. Math. 56 (1996), no. 4, 1129-1145.
[6] P. Ola; L. Päivärinta; E. Somersalo, An Inverse Boundary Value Problem in Electrodynamics, Duke Math. J. 70 (1993), no. 3, 617-653.
[7] G. Nakamura; K. Yoshida, Identification of a Non-convex Obstacle for Acoustical Scattering, J. Inv. Ill-Posed Problems 15 (2007), 1-14.
[8] M. Salo, Semiclassical Pseudodifferetial Calculus and the Reconstruction of a Magnetic Field, Comm. PDE 31 (2006), no. 11, 1639-1666.
[9] E. Somersalo; D. Issacson; M. Cheney, A Linearized Inverse Boundary Value Problem for Maxwell's Equations, J. Compup. Appl. Math. 42 (1992), 123-136.

