
DETERMINING INCLUSIONS FOR THE MAXWELL’S
EQUATIONS

1. Enclosing obstacle

1.1. Direct Problems and CGO-solutions. Let Ω be a bounded domain in
R3 with a C2,1-boundary and a connected complement R3 \ Ω̄. Assume D ⊂ Ω
is the obstacle or cavity. The electric permittivity ε0, conductivity σ0 and mag-
netic permeability µ0 have the following properties: there are positive constants
εm, εM , µm, µM and σM such that for all x ∈ Ω

εm ≤ ε0(x) ≤ εM , µm ≤ µ0(x) ≤ εM , 0 ≤ σ0(x) ≤ σM

and ε0 − εc, σ0, µ0 − µc ∈ C3
0 (Ω) for positive constants εc and µc.

Considering the boundary value problem of Maxwell’s equations

∇∧E = iωµ0H, ∇∧H = −iωγ0E in Ω \ D̄,
ν ∧E = f ∈ TH1/2

Div(∂Ω) on ∂Ω,
(1.1)

where γ0 = ε0 + iσ0
ω , and zero tangential magnetic field condition on ∂D

(ν ∧H)|∂D = 0, (1.2)

here ν is the unit outer normal vector on ∂D. Through this note, we assume the
non-dissipative case σ0 = 0. Then (1.1) degenerates to

∇∧ (µ−1
0 ∇∧E) = ω2ε0E in Ω \ D̄. (1.3)

Notations. If F is a function space on ∂Ω, the subspace of all those f ∈ F 3

which are tangent to ∂Ω (orthogonal to the exterior unit normal vector field of
∂Ω) is denoted by TF . For example, for u ∈ (Hs(∂Ω))3 (s ≤ 2), we have the
decomposition u = ut+uνν, where the tangential component ut = −ν∧ (ν∧u) ∈
THs(∂Ω) and the normal component uν = u · ν ∈ Hs(∂Ω). Therefore, we have a
decomposition of space Hs(∂Ω)3 = THs(∂Ω)⊕Hs(∂Ω). For a bounded domain
Ω in R3, we denote

TH
1/2

Div(∂Ω) = {u ∈ H1/2(∂Ω)3 | Div(u) ∈ H1/2(∂Ω)},

H1
Div(Ω) = {u ∈ H1(Ω)3 | Div(ν ∧ u|∂Ω) ∈ H1/2(∂Ω)},

with norms

‖u‖2
TH

1/2

Div(∂Ω)
= ‖u‖2

H1/2(∂Ω)3
+ ‖Div(u)‖2

H1/2(∂Ω)
,
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‖u‖2H1

Div(Ω) = ‖u‖2H1(Ω)3 + ‖Div(ν ∧ u|∂Ω)‖2
H1/2(∂Ω)

,

where Div is the surface divergence. There are natural inner products making
them Hilbert spaces (see [9]). We also have the Hilbert space

H(∇∧,Ω) = {u ∈ L2(Ω)3 | ∇ ∧ u ∈ L2(Ω)3}

with norm
‖u‖2H(∇∧,Ω) = ‖u‖2L2(Ω)3 + ‖∇ ∧ u‖2L2(Ω)3 .

In addition, we define the weighted L2 space in R3:

L2
δ =

{
f ∈ L2

loc(R3) : ‖f‖2L2
δ

=
∫

(1 + |x|2)δ|f(x)|2dx <∞
}
.

Admissibility. It can be shown that for f ∈ TH1/2(∂Ω) and g ∈ TH−1/2(∂D),
the boundary value problem of Maxwell’s equations

∇∧E = iωµ0H, ∇∧H = −iωγ0E in Ω \ D̄,
ν ∧E|∂Ω = f

ν ∧H|∂D = g,

(1.4)

has a unique solution (E,H) ∈ H(∇∧,Ω\D̄)×H(∇∧,Ω\D̄), except for a discrete
set of magnetic resonance frequencies {ωn}. A proof for Dirichlet problem can be
found in [9]. Moreover, we have the continuous dependency of the H(∇∧)-norm
of the solution on the boundary condition

‖E‖H(∇∧,Ω\D̄) ≤ C(‖f‖H1/2(∂Ω)3 + ‖g‖H−1/2(∂D)3),
‖H‖H(∇∧,Ω\D̄) ≤ C(‖f‖H1/2(∂Ω)3 + ‖g‖H−1/2(∂D)3).

(1.5)

At the same time, a similar proof as in [6] shows that the BVP (1.4) is well
posed for f ∈ TH1/2

Div(∂Ω)), and g ∈ TH1/2

Div(∂D)), i.e., except for the resonance
frequencies there exists a unique solution (E,H) ∈ H1

Div(Ω \ D̄)×H1
Div(Ω \ D̄)

s.t.,

‖E‖H1

Div(Ω\D̄) ≤ C(‖f‖
TH

1/2

Div(∂Ω)
+ ‖g‖

TH
1/2

Div(∂D)
),

‖H‖H1

Div(Ω\D̄) ≤ C(‖f‖
TH

1/2

Div(∂Ω)
+ ‖g‖

TH
1/2

Div(∂D)
))

Let (E0,H0) denotes the solution without the obstacle.
With well-posedness of the direct problem, the impedance map

ΛD(ν ∧E|∂Ω) = ν ∧H|∂Ω,

where ν is the unit outer normal on ∂Ω, is bounded from TH1/2(∂Ω) to TH−1/2(∂Ω)
([9]). Moreover, it is an isomorphism from TH

1/2

Div(∂Ω) to TH1/2

Div(∂Ω), see [6].
The reconstruction of the obstacle will use the CGO-solution constructed in [5].
CGO-solution In [5], the Maxwell’s equation was reduced to an 8 × 8 second
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order Schrödinger vector equation by introducing the generalized Sommerfeld po-
tential. A vector CGO-solution (Sommerfeld potential) was constructed for the
Schrödinger equation, and the proof of the uniqueness is facilitated compared
to [6]. Same technique also appears in dealing with the inverse boundary value
problems for Maxwell’s equations with partial data [2]. The construction is in
R3.
Define the scalar fields Φ and Ψ as

Φ =
i

ω
∇ · (γ0E), Ψ =

i

ω
∇ · (µ0H).

Under some assumptions on Phi and Psi, we have Maxwell’s equation is equiv-
alent to

∇∧E− 1
γ
∇
(

1
µ

Ψ
)
− iωµH = 0, ∇∧H +

1
µ
∇
(

1
γ

Φ
)

+ iωγE = 0.

Moreover, in this case, Φ and Ψ vanish. Let X = (φ, e, h, ψ)T ∈ (D′)8 with

e = γ
1/2
0 E, h = µ

1/2
0 H,

φ =
1

γ0µ
1/2
0

Φ, ψ =
1

γ
1/2
0 µ0

Ψ.

Then X satisfies
(P (i∇)− k + V )X = 0, in Ω (1.6)

where

P (i∇) =


0 ∇· 0 0
∇ 0 ∇∧ 0
0 −∇∧ 0 ∇
0 0 ∇· 0

 ,

V = (k − κ)18 +




0 ∇· 0 0
∇ 0 −∇∧ 0
0 ∇∧ 0 ∇
0 0 ∇· 0

D

D−1,

D = diag(µ1/2
0 , γ

1/2
0 13, µ

1/2
0 13, γ

1/2
0 ), κ = ω(γ0µ0)1/2, k = ω(εcµc)1/2.

A desirable property of this operator is

(P (i∇)− k + V )(P (i∇) + k − V T ) = −(∆ + k2)18 +Q,

where
Q = V P (i∇)− P (i∇)V T + k(V + V T )− V V T

is a zeroth-order matrix multiplier. Based on this, by writing an ansatz for X,
we define the generalized Sommerfeld potential Y

X = (P (i∇) + k − V T )Y.
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So it satisfies the Schrödinger equation

(−∆− k2 +Q)Y = 0. (1.7)

The following CGO-solution is due to the Faddeev’s Kernel. Let ζ ∈ C3 be a
vector with ζ · ζ = k2. Suppose y0,ζ ∈ C8 is a constant vector with respect to x
and bounded with respect to ζ, there exist a unique solution of (1.7) of the form

Yζ(x) = eix·ζ(y0,ζ − vζ(x)),

where vζ(x) ∈ (L2
δ+1)8, and

‖vζ‖(L2
δ+1)8 ≤ C/|ζ|

for δ ∈ (−1, 0). Moreover, one can show that vζ ∈ Hs(Ω)8 for 0 ≤ s ≤ 2, e.g., see
[1], and

‖vζ(x)‖Hs(Ω)8 ≤ C|ζ|s−1. (1.8)

Lemma 3.1 in [5] states that if we choose y0,ζ such that the first and the last
components of (P (ζ)− k)y0,ζ vanish, then for large |ζ|, Xζ provides the solution
of the original Maxwell’s equation.
Let’s examine this Xζ more closely by giving specific choices of vectors.

Xζ = eix·ζ
[
(P (−ζ) + k) y0,ζ +

(
P (−ζ)vζ + P (i∇)vζ − V T y0,ζ + kvζ − V T vζ

)]
.

(1.9)
As in [5], we choose

y0,ζ =
1
|ζ|

(ζ · a, ka, kb, ζ · b)T ,

where
ζ = −iτρ+

√
τ2 + k2ρ⊥,

with ρ, ρ⊥ ∈ S2 and ρ·ρ⊥ = 0. τ > 0 is used to control the size of |ζ| =
√

2τ2 + k2.
Taking τ →∞, we have

ζ

|ζ|
→ ζ̂ =

1√
2

(−iρ+ ρ⊥).

Choosing a and b such that

ζ̂ · b = 1, ζ̂ · a = 0,

e.g., when n ≥ 3, let

a ⊥ ρ, a ⊥ ρ⊥; b =
ζ̂

|ζ̂|2
.

The choice of y0,ζ is such that

x0,ζ := (P (−ζ) + k)y0,ζ =
1
|ζ|


0

−(ζ · a)ζ − kζ ∧ b+ k2a

kζ ∧ a− (ζ · b)ζ + k2b

0

 .
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It’s easy to see that

η = (x0,ζ)2 → −kζ̂ ∧ b (∼ O(1)),

θ = (x0,ζ)3 ∼ O(τ)

as τ →∞. Then Xζ is written in the form

Xζ = eτ(x·ρ)+i
√
τ2+k2x·ρ⊥(x0,ζ + rζ(x))

where
rζ = P (−ζ)vζ + P (i∇)vζ − V T y0,ζ + kvζ − V T vζ

satisfying for C > 0 independent of ζ.

‖rζ‖L2
δ(Ω)

3 ≤ C.

Hence the CGO solution of the Maxwell’s equation is given by

E0 = ε
−1/2
0 eτ(x·ρ)+i

√
τ2+k2x·ρ⊥(η +R)

H0 = µ
−1/2
0 eτ(x·ρ)+i

√
τ2+k2x·ρ⊥(θ +Q)

where η = O(1), θ = O(τ), R,Q ∈ L2
δ(R3) are bounded for τ � 1.

1.2. Main result. Adding a parameter t in the weight, we use the CGO solution

E0 = ε
−1/2
0 eτ(x·ρ−t)+i

√
τ2+k2x·ρ⊥(η +R)

H0 = µ
−1/2
0 eτ(x·ρ−t)+i

√
τ2+k2x·ρ⊥(θ +Q)

(1.10)

to define an indicator function and a support function

Definition 1. Define

Iρ(τ, t) :=
∫
∂Ω

(ν ∧E0) ·
(

(ΛD − Λ∅)(ν ∧E0) ∧ ν
)
dS

to be the indicator function

Definition 2. Define the support function of the convex hull of D

hD(ρ) := sup
x∈D

x · ρ

for a fixed ρ ∈ S2.

Now we are ready to state our main result.

Theorem 1.1. We assume that the set {x ∈ R3 | x · ρ = hD(ρ)} ∩ ∂D consists
of one point and the Gaussian curvature of ∂D is not vanishing at that point.
Then, we can recover hD(ρ) by

hD(ρ) = inf{t ∈ R | lim
τ→∞

Iρ(τ, t) = 0}.

Moreover, if D is strictly convex, then we can reconstruct D.
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Remark 1. The proof of Theorem 1.1 mainly consists of showing the following
limits:

lim
τ→∞

Iρ(τ, t) = 0, when t > hD(ρ); (1.11)

lim inf
τ→∞

Iρ(τ, hD(ρ)) = C > 0; (1.12)

Remark 2. A surface is said to be strictly convex if its Gaussian curvature is
everywhere positive. Therefore, if the obstacle D is strictly convex, then Theorem
1.1 provides a reconstruction scheme of the shape of D.

1.3. A key integral equality.

Lemma 1.2. Assume (E,H) is a solution of (1.1) or (1.3) satisfying the bound-
ary condition

ν ∧H|∂D = 0 and ν ∧E|∂Ω = ν ∧E0|∂Ω.

We have

iω

∫
∂Ω

(ν ∧E0) ·
[
(ν ∧H− ν ∧H0) ∧ ν

]
dS

=
∫

Ω\D̄
µ−1

0 |∇ ∧E−∇ ∧E0|2 − ω2ε0|E−E0|2dx

+
∫
D
µ−1

0 |∇ ∧E0|2 − ω2ε0|E0|2dx. (1.13)

Proof: Denote

I := iω

∫
∂Ω

(ν ∧E0) · [(ν ∧H− ν ∧H0) ∧ ν]dS = iω

∫
∂Ω

(ν ∧E0) · (H−H0)dS.

First by integration by parts, we have∫
Ω\D̄

µ−1
0 (∇∧E) · (∇∧E−∇ ∧E0)− ω2ε0E · (E−E0)dx

= −
(∫

∂Ω
−
∫
∂D

)
(ν ∧ µ−1

0 (∇∧E)) · (E−E0)dS = 0

by the boundary conditions. Adding this to the following equality

I =
∫
∂Ω

(ν ∧E0) · (−iωH + iωH0)dS

=
∫

Ω\D̄
−µ−1

0 (∇∧E0) · (∇∧E) + ω2ε0E0 ·Edx

+
∫

Ω
µ−1

0 |∇ ∧E0|2 − ω2ε0|E0|2dx+
∫
∂D

(ν ∧E0) · (−iωH)dS

with the last term vanishing due to the zero-boundary condition on the interface,∫
∂D

(ν ∧E0) · (−iωH)dS =
∫
∂D

(ν ∧E0) · (−iω(ν ∧H) ∧ ν)dS = 0,
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we obtain (1.13). �

Remark 3. Providing zero tangential electric field instead of magnetic field on
the interface

(ν ∧E)|∂D = 0,

we have a similar identity

−I =
∫

Ω\D̄
µ−1

0 |∇∧E−∇∧E0|2−ω2ε0|E−E0|2dx+
∫
D
µ−1

0 |∇∧E0|2−ω2ε0|E0|2dx.

(1.14)

1.4. Proof of the main theorem. First, we show (1.11) by propose an upper
bound of the indicator function. Let Ẽ = E−E0 be the reflect solution in Ω \ D̄.
It satisfies 

∇∧ (µ−1
0 ∇∧ Ẽ)− ω2ε0Ẽ = 0 in Ω \ D̄,

ν ∧ Ẽ|∂Ω = 0,
ν ∧ (µ−1

0 ∇∧ Ẽ)|∂D = −ν ∧H0|∂D ∈ TH−1/2(∂D).
(1.15)

The well-posedness of this boundary value problem shows

‖Ẽ‖H(∇∧,Ω\D̄) ≤ C‖ν ∧H0|∂D‖H−1/2(∂D)3 ≤ C‖E0‖H(∇∧,D),

where we denote the general constant C > 0. The second inequality is because
for v ∈ H(∇∧, D),∫

∂D
(ν ∧H0) · vdx = −

∫
D

H0 · ∇ ∧ v +∇∧H0 · vdx

=
∫
D

i

ω
µ−1(∇∧E0) · (∇∧ v) + iωε0E0 · vdx.

Notice that

‖H0‖H(∇∧,D) ≤ C‖E0‖H(∇∧,D) ≤ C(‖E0‖L2(D)3 +‖H0‖L2(D)3) ≤ C‖H0‖H(∇∧,D).

Therefore, (1.13) implies

Iρ(τ, t) ≤ C(‖E0‖L2(D)3 + ‖H0‖L2(D)3). (1.16)

Plug in the CGO-solution (1.10), we obtain the following estimates:

‖E0‖2L2(D)3
≤ Ce2τ(hD(ρ)−t)‖η +R‖2

L2(D)3
∼ e2τ(hD(ρ)−t) τ � 1,

‖H0‖2L2(D)3
≤ Ce2τ(hD(ρ)−t)‖θ +Q‖2

L2(D)3
∼ τ2e2τ(hD(ρ)−t) τ � 1.

Therefore, we obtain
Iρ(τ, t) ≤ Cτe2τ(hD(ρ)−t)

for τ large enough, proving the first limit (1.11).

To show the second limit (1.12), it suffices to show the following two lemmas.
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Lemma 1.3. If t = hD(ρ) in CGO-solution (1.10), then

lim inf
τ→∞

∫
D
|∇ ∧E0|2dx = C,

with some constant C > 0.

Lemma 1.4. If t = hD(ρ), then there exists a positive number c such that

ω2ε0

(∫
Ω\D̄ |E−E0|2dx+

∫
D |E0|2dx

)
µ−1

0

∫
D |∇ ∧E0|2dx

≤ c < 1,

for τ large enough.

Proof of Lemma 1.3: This is the same proof as in the conductivity case by
noticing the left hand side integral∫

D
|∇ ∧E0|2dx ≥ C‖H0‖2L2(D)3

≥ C
∫
D
τ2e2τ(x·ρ−hD(ρ))dx.

Proof of Lemma 1.4: The proof here is essentially the same as for the
Helmholtz equation. It suffices to show

lim
τ→∞

ω2ε0

∫
Ω\D̄ |E−E0|2dx

µ−1
0

∫
D |∇ ∧E0|2dx

= lim
τ→∞

ε0

∫
Ω\D̄ |E−E0|2dx
µ0

∫
D |H0|2dx

= 0.

So we estimate the numerator. Consider the BVP
∇∧ p = iωµ0q, ∇∧ q = −iωε0p− i

ω Ẽ in Ω \ D̄,
p|∂Ω = 0,
q|∂D = 0.

(1.17)

************or ν ∧ q|∂D = 0? which boundary conditions can guarantee p ∈
H2(Ω \ D̄)?
Assume we propose a proper zero boundary condition for this BVP such that it
is well-posed for Ẽ ∈ H(∇∧,Ω \ D̄), i.e., there exists p ∈ H2(Ω \ D̄)3, s.t.,

‖p‖
H2(Ω\D̄)

3 ≤ C‖Ẽ‖
L2(Ω\D̄)

3 .

By the Sobolev embedding, we have

|p(x)− p(y)| ≤ C|x− y|1/2‖Ẽ‖
L2(Ω\D̄)

3 for x, y ∈ Ω \ D̄,

sup
x∈Ω\D̄

|p(x)| ≤ C‖Ẽ‖
L2(Ω\D̄)

3 .

Notice that

∇∧ (µ−1
0 ∇∧ p)− ω

2ε0p = Ẽ.
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Then, integration by parts shows∫
Ω\D̄
|Ẽ|2dx =

∫
Ω\D̄

Ẽ · (∇∧ (µ−1
0 ∇∧ p)− ω

2ε0p)dx

=
∫

Ω\D̄
µ−1

0 (∇∧ Ẽ) · (∇∧ p)− ω2ε0Ẽ · pdx

+
(∫

∂Ω
−
∫
∂D

)
Ẽ · (ν ∧ (µ−1

0 ∇∧ p))dS

=
∫

Ω\D̄
∇∧ (µ−1

0 ∇∧ Ẽ) · p− ω2ε0Ẽ · pdx

−
(∫

∂Ω
−
∫
∂D

)
ν ∧ (µ−1

0 ∇∧ Ẽ) · pdS

= −
∫
∂D

ν ∧ (µ−1
0 ∇∧E0) · pdS.

Denote by x0 the point in {x ∈ ∂D |x · ρ = hD(ρ)}. We have

‖Ẽ‖2
L2(Ω\D̄)

3 =
∫
∂D

(p(x0)− p(x)) · ν ∧ (µ−1
0 ∇∧E0)dS −

∫
D
ω2ε0p(x0) ·E0dx

≤ C

{∫
∂D
|x− x0|1/2|ν ∧H0|dS +

∫
D
|E0|dx

}
‖Ẽ‖

L2(Ω\D̄)
3

≤ C

{∫
∂D

τ |x− x0|1/2eτ(x·ρ−hD(ρ))dS +
∫
D
eτ(x·ρ−hD(ρ))dx

}
‖Ẽ‖

L2(Ω\D̄)
3

This yields∫
Ω\D̄
|Ẽ|2dx ≤ C

{
τ2

(∫
∂D
|x− x0|1/2eτ(x·ρ−hD(ρ))dS

)2

+
(∫

D
eτ(x·ρ−hD(ρ))dx

)2
}
.

Then follow the step in Helmholtz case to show

lim
τ→∞

τ

∫
∂D
|x− x0|1/2eτ(x·ρ−hD(ρ))dS = 0,

where the assumption of the Gaussian curvature is required.
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